72 research outputs found

    Three dimensional virtual surgical planning for patient specific osteosynthesis and devices in oral and maxillofacial surgery. A new era.

    Get PDF
    Three dimensional virtual surgical planning (3D VSP) has become a structural component in the oral and maxillofacial surgeon’s armamentarium. Over the years, the 3D technology has increased the predictability, accuracy and speed of surgical procedures within the field of oral and maxillofacial surgery (OMFS). This thesis aimed to improve the workflows for 3D VSP, in order to further improve surgical procedures in OMFS and, to provide adequate indications for the use of 3D VSP. In the new era of 3D VSP, optimisation is required for the following components: 1. Integration of multi-modality imaging into a single 3D VSP. 2. Systematic comparison with conventional methods, including thorough testing and validation of new 3D VSP applications. 3. Definitions of adequate indications for the use of 3D VSP. 4. Definitions of the required technical and medical expertise conforming to the implementation of 3D VSP. This thesis addresses these components and aims to present new and validated methods for three main pillars of OMFS. It is emphasized that the new technical physician profession seems to be crucial for the translation of technological developments and innovations in each of these applications into clinical practice. The new 3D VSP strategies delineated in this thesis for OMFS improve treatments in terms of predictability, accuracy and detailed possibilities for postoperative evaluation. This thesis optimises the workflows, systematically compares the 3D VSP methods to conventional methods and objectifies the indications for the wide, timely use of 3D VSP

    Two-Step 3D-Guided Supramalleolar Osteotomy to Treat Varus Ankle osteoarthritis

    Get PDF
    Background: Success of valgus-type supramalleolar osteotomy (SMOT) depends on adequate correction of malalignment, which can be hard to achieve with current 2-dimensional (2D) planning and operative techniques. A personalized digital 3-dimensional (3D) workflow to virtually plan and perform a 2-step 3D-guided medial opening (MO) SMOT has the potential to improve precision of correction. Methods: Computed tomography (CT)-based Proplan medical 3D models were made to virtually plan the desired MO SMOT, and exported to 3-Matic medical to develop patient-specific 2-step cutting and wedge guides. Workflow accuracy was tested in this limited clinical pilot study (3 patients) by comparing the virtual planned position of the osteotomized distal tibial fragment with the I -year post-MO SMOT configuration. Two millimeters or less translation deviation in every plane was defined as accurate. Results: Primary outcome analysis of the osteotomized distal tibial fragment deviation showed a median translation in all planes of 0.7 (range 0-8.2) mm (interquartile range 1.55) with an excellent interrater reliability of the measurements (intraclass correlation coefficient 0.998). There was a strong reduction in ankle pain as reflected by an increase of the AOFAS-AH score and decrease of NRS pain score with an unrestricted hindfoot motion 1 year after surgery. Conclusion: 3D virtually planned bone cutting and wedge guides is a promising approach associated with minimal postoperative deviation from the desired correction in medial opening supramalleolar osteotomy

    A Contemporary Approach to Non-Invasive 3D Determination of Individual Masticatory Muscle Forces:A Proof of Concept

    Get PDF
    Over the past decade, the demand for three-dimensional (3D) patient-specific (PS) modelling and simulations has increased considerably; they are now widely available and generally accepted as part of patient care. However, the patient specificity of current PS designs is often limited to this patient-matched fit and lacks individual mechanical aspects, or parameters, that conform to the specific patient’s needs in terms of biomechanical acceptance. Most biomechanical models of the mandible, e.g., finite element analyses (FEA), often used to design reconstructive implants or total joint replacement devices for the temporomandibular joint (TMJ), make use of a literature-based (mean) simplified muscular model of the masticatory muscles. A muscle’s cross-section seems proportionally related to its maximum contractile force and can be multiplied by an intrinsic strength constant, which previously has been calculated to be a constant of 37 [N/cm2]. Here, we propose a contemporary method to determine the patient-specific intrinsic strength value of the elevator mouth-closing muscles. The hypothesis is that patient-specific individual mandible elevator muscle forces can be approximated in a non-invasive manner. MRI muscle delineation was combined with bite force measurements and 3D-FEA to determine PS intrinsic strength values. The subject-specific intrinsic strength values were 40.6 [N/cm2] and 25.6 [N/cm2] for the 29- and 56-year-old subjects, respectively. Despite using a small cohort in this proof of concept study, we show that there is great variation between our subjects’ individual muscular intrinsic strength. This variation, together with the difference between our individual results and those presented in the literature, emphasises the value of our patient-specific muscle modelling and intrinsic strength determination protocol to ensure accurate biomechanical analyses and simulations. Furthermore, it suggests that average muscular models may only be sufficiently accurate for biomechanical analyses at a macro-scale level. A future larger cohort study will put the patient-specific intrinsic strength values in perspective

    Morphological Variation of the Mandible in the Orthognathic Population—A Morphological Study Using Statistical Shape Modelling

    Get PDF
    The aim of this study was to investigate the value of 3D Statistical Shape Modelling for orthognathic surgery planning. The goal was to objectify shape variations in the orthognathic population and differences between male and female patients by means of a statistical shape modelling method. Pre-operative CBCT scans of patients for whom 3D Virtual Surgical Plans (3D VSP) were developed at the University Medical Center Groningen between 2019 and 2020 were included. Automatic segmentation algorithms were used to create 3D models of the mandibles, and the statistical shape model was built through principal component analysis. Unpaired t-tests were performed to compare the principal components of the male and female models. A total of 194 patients (130 females and 64 males) were included. The mandibular shape could be visually described by the first five principal components: (1) The height of the mandibular ramus and condyles, (2) the variation in the gonial angle of the mandible, (3) the width of the ramus and the anterior/posterior projection of the chin, (4) the lateral projection of the mandible’s angle, and (5) the lateral slope of the ramus and the inter-condylar distance. The statistical test showed significant differences between male and female mandibular shapes in 10 principal components. This study demonstrates the feasibility of using statistical shape modelling to inform physicians about mandible shape variations and relevant differences between male and female mandibles. The information obtained from this study could be used to quantify masculine and feminine mandibular shape aspects and to improve surgical planning for mandibular shape manipulations.</p

    Four-Dimensional Determination of the Patient-Specific Centre of Rotation for Total Temporomandibular Joint Replacements:Following the Groningen Principle

    Get PDF
    For patients who suffer from severe dysfunction of the temporomandibular joint (TMJ), a total joint replacement (TJR) in the form of a prosthesis may be indicated. The position of the centre of rotation in TJRs is crucial for good postoperative oral function; however, it is not determined patient-specifically (PS) in any current TMJ-TJR. The aim of this current study was to develop a 4D-workflow to ascertain the PS mean axis of rotation, or fixed hinge, that mimics the patient’s specific physiological mouth opening. Twenty healthy adult patients were asked to volunteer for a 4D-scanning procedure. From these 4D-scanning recordings of mouth opening exercises, patient-specific centres of rotation and axes of rotation were determined using our JawAnalyser tool. The mean CR location was positioned 28 [mm] inferiorly and 5.5 [mm] posteriorly to the centre of condyle (CoC). The 95% confidence interval ranged from 22.9 to 33.7 [mm] inferior and 3.1 to 7.8 [mm] posterior to the CoC. This study succeeded in developing an accurate 4D-workflow to determine a PS mean axis of rotation that mimics the patient’s specific physiological mouth opening. Furthermore, a change in concept is necessary for all commercially available TMJ-TJR prostheses in order to comply with the PS CRs calculated by our study. In the meantime, it seems wise to stick to placing the CR 15 [mm] inferiorly to the CoC, or even beyond, towards 28 [mm] if the patient’s anatomy allows this

    Reproducibility of 2D and 3D Ramus Height Measurements in Facial Asymmetry

    Get PDF
    In our clinic, the current preferred primary treatment regime for unilateral condylar hyperactivity is a proportional condylectomy in order to prevent secondary orthognathic surgery. Until recently, to determine the indicated size of reduction during surgery, we used a 'panorex-free-hand' method to measure the difference between left and right ramus heights. The problem encountered with this method was that our TMJ surgeons measured differences in the amount to resect during surgery. Other 2D and 3D method comparisons were unavailable. The aim of this study was to determine the most reproducible ramus height measuring method. Differences in left/right ramus height were measured in 32 patients using three methods: one 3D and two 2D. The inter- and intra-observer reliabilities were determined for each method. All methods showed excellent intra-observer reliability (ICC > 0.9). Excellent inter-observer reliability was also attained with the panorex-bisection method (ICC > 0.9), while the CBCT and panorex-free-hand gave good results (0.75 < ICC < 0.9). However, the lower boundary of the 95% CI (0.06-0.97) of the inter-observer reliability regarding the panorex-free-hand was poor. Therefore, we discourage the use of the panorex-free-hand method to measure ramus height differences in clinical practice. The panorex-bisection method was the most reproducible method. When planning a proportional condylectomy, we advise applying the panorex-bisection method or using an optimized 3D-measuring method

    Utilising the nasal aperture for template stabilisation for guided surgery in the atrophic maxilla

    Get PDF
    Background: Templates aim to facilitate implant placement in the prosthetically preferred position. Mucosa-supported and bone-supported templates are commonly used in the edentulous maxilla. In the atrophic maxilla (Cawood V and VI), however, these templates can be easily displaced due to a lack of supportive tissues, even in cases where anterior sites offer sufficient bone for implant placement. To assist in positioning and stabilisation, we designed a template that utilises the nasal aperture as a fulcrum to create a forced and exclusive fit. The aim of this study was to assess the clinical usability of the developed template and the corresponding implant placement accuracy in patients with edentulous atrophic maxillae. Deviations between planned and placed implant positions were measured by aligning pre- and post-operative cone beam computed tomography scans. Results: Twenty-four implants were placed in 11 patients. One template did not fit properly due to a slight undercut. All implants could be placed with good primary stability. The implants had high accuracy at the implant shoulder (global deviation 1.1 +/- 0.5 mm, lateral deviation 0.8 +/- 0.5 mm) and a mean angular deviation of 7.2 +/- 3.4 degrees. Conclusions: The developed surgical template offers stabilised and secure template placement in the edentulous atrophic maxilla, resulting in satisfying implant placement accuracy when using a semi-guided approach

    Structural similarity analysis of midfacial fractures:a feasibility study

    Get PDF
    The structural similarity index metric is used to measure the similarity between two images. The aim here was to study the feasibility of this metric to measure the structural similarity and fracture characteristics of midfacial fractures in computed tomography (CT) datasets following radiation dose reduction, iterative reconstruction (IR) and deep learning reconstruction. Zygomaticomaxillary fractures were inflicted on four human cadaver specimen and scanned with standard and low dose CT protocols. Datasets were reconstructed using varying strengths of IR and the subsequently applying the PixelShine™ deep learning algorithm as post processing. Individual small and non-dislocated fractures were selected for the data analysis. After attenuating the osseous anatomy of interest, registration was performed to superimpose the datasets and subsequently to measure by structural image quality. Changes to the fracture characteristics were measured by comparing each fracture to the mirrored contralateral anatomy. Twelve fracture locations were included in the data analysis. The most structural image quality changes occurred with radiation dose reduction (0.980036±0.011904), whilst the effects of IR strength (0.995399±0.001059) and the deep learning algorithm (0.999996±0.000002) were small. Radiation dose reduction and IR strength tended to affect the fracture characteristics. Both the structural image quality and fracture characteristics were not affected by the use of the deep learning algorithm. In conclusion, evidence is provided for the feasibility of using the structural similarity index metric for the analysis of structural image quality and fracture characteristics
    • …
    corecore